OpenApple

Releasing the power to everyone.

June 1987
Yol. 3, No.5

1SSN 08854017
newstand price: $2.00
photocopy charge per page: $015

Making AppleWorks relational

Since my March article on how to create your own program that can read
AppleWorks data base files, requests have been coming in for the promised
companion article on how to write such files. This month we're going to fulfill
that promise.

One of our subscribers who's in a hurry to see this companion article
pointed out that auxiliary programs able to read and write several data base
files at a time could turn AppleWorks into a relational data base system.
While I'd heard the words “relational data base” many times and understood
this system was a powerful way to store data, [didn't really know much about
it. My interest was tweeked, however, and | started nosing through a book
called Database: A Primer, by CJ. Date (Addison-Wesley).

According to Date, the "relational mode!” is concerned with three aspects
of a data base: its structure, its integrity, and the ways it can be manipulated.

The structural part of the relational model specifies that all data
must be kept in tables. The AppleWorks data base does, in fact, store your
data that way. You can see it by looking at one of your data base files with the
multiple-record display, which puts each of your records in its own separate
row and each of your categories in a column, (Usually, however, you can’t
actually see all of the columns because some are beyond the right edge of
the screen. Unlike the AppleWorks spreadsheet, the data base doesn't allow
you to scroll sideways to see the other categories. You can always use the
open-apple-L{ayout) command, however, to move any specific column onto
the screen so you can see it.)

In addition to the general table structure, the relational model also
specifies that each row must contain exactly one value for each column.
AppleWorks allows you to put any number of values in a row-column ceil. For
example, look at Smith’s “administer at” cell from this sample data base,
which is called “patient-medication-times™:

administer at

@a:2e, 20:00

patlient

Smith

medication

Naprosyn

To conform to the relational model, this AppleWorks file must be modified
so that only one value appears in each "administer at” cell. One way to do
this would be to change the data to look like this:

patient medication administer at
Smith Naprosyn 08:00
Smi th Naprosyn 20:00

Tables with exactly one value in each cell are said to be “normalized”
According to Date, normalized tables are "a special-case of the construct
known in mathematics as a relation....The whole relational model is founded
on elementary mathematical relation theory”

While a data base with just one table could follow all the rules of a relational
data base, the power of relation theory doesn’t come into play until you have
more than one table. While AppleWorks does allow you to have more than
one table on its desktop at once, it doesn't have any ability to manipulate or
view data from two or more tables simultaneously. This is the major thing that
prevents AppleWorks from being a relational data base system. Auxiliary
programs with the ability to read and write AppleWorks data base files,
however, could unite several AppleWorks tables into a true rvlational data
base —a data base consisting of a number of tables related to 2ach other by
means of "keys.’

The integrity part of the relational model has to do with these keys.
There are two kinds of keys, primary keys and foreign keys. “Every table
should have a primary key—that is, a field, or field combination, that serves
as a unique identifier for the records in that table,” Date says.

Account numbers, it would appear, were invented to fill the need for
primary keys—for unique identifiers. Paradoxically, most people view
account numbers as impersonal, yet their function is often ultra-personal —
to uniquely identify a specific person in a data base. Names usually aren’t
used as a primary key because more than one person can have the same
name.

Whatis the primary key in the table shown earlier? Even if we used a patient
number instead of “Smith,” that column couldn’t be the primary key because
both records refer to the same patient. The only column in the table that has
unique valuesis the "administer at” column, yet it’s easy to imagine the table
growing to something like this:

patient medication administer at
Smith.073 Naprosyn 08:9¢
Smith.0?3 Methocarbamol — 0:00
Smith.073 Hzthocarbamol 16:00
Smith,073 Naprosyn 20:00
Smith.073 Methocarbamal — 24:00

Now, no single column has unique values. However, Date did say that a
primary key could be a “field combination.” The primary key of this table, in
fact, is a combination of all of its columns, .

It's important to understand that the word “key” doesn't mean the same
thing as “column.” While, as mentioned earlier, no rowcolumn cell in a
relational data base can hold more than one value, a key can be made up of
several values. The important thing about the primary key is that no other row
in the table can have the same key value. The value in the primary key,
whether made up of one or several columns, must uniquely identify each row.
(It follows from this, and Date makes a point of saying it, that a row's value for
the primary key can never be “null” or blank.)

“FIRST T'LL SWITCH OUT THE MOTHERROARD,
- THEN WE'LL TRY YOUR IDEA”

3.34 Open-Apple

A “foreign key” ties one table to another table by linking with the second
table’s primary key. Foreign keys do not have to be unique (several rows in the
“foreign table” may be related to the same row in the “primary fable.”)

However, every value in the foreign key of a table must either be equal to a-

value in the primary key of the other table or be null. Said another way, a
foreign key links each row in its own table with exact[y one row in another
table. A foreign key value that doesn't exist in the primary key of the other
table is iflegal. A blank foreign key, which means that the row doesn't link with
anything in the second table, is allowable, however.

In our sample “patient-medication-times” table, for instance, the "patient”

column could be defined as a foreign key capabie of linking thattable witha

“patient-census” table that has exactly one row for each patient. The patient-
census table might look something like this:

patient room physician primary nurse allergies

Smith.073 209 Jones.84 ~ Doe.8l yes

In addition, the “room,” “physician,” and “primary nurse” columns of
patient-census could all be foreign keys linking this table with other tables.
Even the primary key of this table, “patient,* could be a foreign key into
another table that also had “patient” as a primary key (that table might hold
non-medical information about the patient, such as address, phone number,
and insurance company).

The manipulative part of the relational model “consists of a set of
operators known collectively as the relational algebra. Each operator of the
relational algebra takes either one or two tables as its operands and
produces-a new table as its result” These operators do things such as
combine two tables (called JOIN), extract cértain rows from a table (called
SELECT or RESTRICT), and .extract certain mlumns from a table (called
PROJECT),

AppleWorks has some of these powers. It particular, it has two tools, open-
apple-Rlecord select) and open-apple-F(ind), for SELECTing certain rows
from a table. In conjunction with the clipboard, you can even use these tools
to move the extracted rows to a new table.

Open-apple-L{ayout) allows you (forces you, in fact) to exiract certain
columns from a table. Open-apple-L{ayout) is not a true PROJECT, however.
The PROJECT operator is also supposed to ignore any redundant rows. For
example, if we were to PROJECT our patient-medication-times table “over”
patient and medication, the result should include only two rows, not five:

patient medication

Smith.@73 Naprosyn

Smith.@73 Methocarbamal
AppleWorks can't do that.

In addition, AppleWorks includes no way to join two tables. The JOIN
operator takes two tables and makes a new, wider table out of them. JOIN
requires that you specify a column in each table. It concatenates all rows in
which the specified columns have equal values. For example:

A a b c A d] f

JOINed with ==================
x al bl ¢l ¥ d el Fl
y d2 e2 f2
y dd e3 f3

on “A” is:

A a b ¢ d e °F

al Bl el dl el- Ff1
a2 b2 ©2 dl el fl
a3 " b3 3 d2 2 f2 :
ad b3 3 dI e3 f3 i

Theresult shown hereis called a "natural” join. If the "A” column-appeared

m the nesultmg table twice, instead of once as here, that would be an
“equijoin.”

(Notice that JOIN is just a mathematlcal operator that works whether you
have Iegltimate primary and foreign keys or not. Column A isn't a legitimate
primary key in any of these tables because the values in that column aren't
unique. Consequently, Column A isn't a legitimate foreign key in any of these
tables, either. A lbralgn key can't exist without a legitimate primary key to link
to. The foreign key is supposed to link its rows to exactly one row in the
primary key's table. If the values in the “primary key” aren't unique, this isn't
possible.)

[T=T=R Y

Yol. 3, No.5

In essence, then, a Relational Data Base System is software that
supports the storage of data in tables made up of columns of categories and
rows of records. Each table must have a primary key that is made up of the
values in one or more columns. The values in the primary key must uniquely
1dentlfy each row in the table. Tables may also have foreign keys that tie each
tow in the table with the exactly one row in another table by linking to that
second table’s primary key The software must support the relational
operators SELECT, PROJECT, and JOIN for creating new tables.

" “AppleWorks provides a small subset of a relational system — it stores data

in a table and it provides a SELECT operator. -

In‘his book, Date doesn't address the advantages relational systems have
over the older hierarchical and network data base systems, He simply posits
that the merits of the systems have been well aired and that "most database
professionals now believe that relational technology is the way of the future.’
It appears to me, however, that the advantages of relational systems must be
that they are efficient in terms of storage used, that they are relatively easy to
expand or redesign, and that they.provide powerful tools for quickly
extracting specific information from a large data base.

When designing a relational data base, Date says, you need fo first decide
what “entities” you are trying to organize and give each its own separate
table. In our previous example, for instance, "patient” is an entity that should
get its own table (patient-census). Each table consists of its primary key,
which is a field or field combination that uniquely identifies the rows in the
table, and other fields, each of which “represents a fact about the key, the
whole key, and nothing but the key.”

When a field in a "wide” table needs to lold more than one fact about the
key, the best strategy is to create a new table. (When a “narrow” table needs to
hold more than one fact about a field, the best strategy may be to make that
field part of the key and duplicate the row—as we did in our patient-
medication-times table, for example.) In our patient-census table, one of the
fields.is for "allergies.” A patient can have more than one allergy. If we follow
the same "narrow” strateqy that we used for patient-medication-times, we
get:

patient room physician primary nurse allergies
Smith.@73 209 Jones.04 Dae.01 penicillin
Smith.073 203 Jones. @4 Doe.0l raspbarries

There are two problems with this strategy. The first is that it uses up lots of
storage for redundant information (why should room, physician, and primary
nurse take up space for each allergy?). The second is that “allergies” must be
included as part: of the primary key to keep each row unique. But if “allergies”
is pan of the primary key for this table, then our patient-medication-times
table, in order to link to this one, would have to look like this:

patient allergies medication administer at |
Smith penicillin Naproeyn Ba:e0
Smith raspberriss Naprasyn 0B:20

Adding allergies to this table just so we have a foreign key to link back to
the patient table’s primary key makes no sense, either. So, instead, we
incorporate “allergies” into our data base by using the “wide” strategy of
forming a new table, Then we have:

patient room physician primary nurse aliergies
Smith.e?3 209 Jones. 94 Doe.@1 yes

and

patient allergies

Saith.973 penicillin)

Smith.973 raspberries

Using two tables is very efficient and powerful from the data base system's
perspective. From a user's perspective, however, tables suchasthese maybe
the best way to organize the data:

patient . allergiss administer at medication
Smith.073 penicillin 26:00 Naprosyn
rzispbér ries Methocarbemol
16:00 Methacarbamal
20:00 Naprasyn
24:00 Methocarbamol

June 1987
agminister at room patient medication
08:00 205 Smith.073 Naprosyn
Methocarbamal
210 Singh.829 Tetracycline

A user-oriented table is called a “view” A view extracts pre-selected data
out of a number of different physical tables and presents it in a format useful
to a user. Different users usually have different views of a data base. A primary
nurse requires views that are different from those the accounting department
needs.

There is a sense in which a view is a “report format” printed to screen.
However, in an ideal system, users could add to or modify the data in the
underlying tables by editing the values in one of their views, You can't do that
with printed reports.

Data base views are powerful tools. They allow data base tables to be
structured in a way that is best for data storage, with no concern at all for
users. On the other hand, they allow users to see and manipulate data in a
way that is best for them, with absolutely no concern about the actual
structure of the underlying tables.

The relational system described by Date appears to be a non-existent ideal
— he regularly points out features that are missing from the four relational
software packages he discusses in his book. Nonetheless, it doesn't sound
impossible to create a simple, elegant, AppleWorks-ike relational data base
for the Apple I1. ProDOS certainly needs (and deserves} a sophisticated data
base program,

The software packages described by Date mostly use a “command line”
interface (like Applesoft’s), though one provides a‘form that you fill out to
access data. None of them take the more AppleWorks-like approach of
showing you the actual data in atableyou can scroll through and allowing you
to manipulate things by pointing at what you are interested in. I suspect that
a data base program that worked like that, that had the speed and simplicity
of AppleWorks, and that was programmable (so that specific systems for
primary nurses or for user-group secretaries or for Apple’s software licensing
department could be designed and sold like templates) would be a hit.

Meanwhile, as we wait for one of Open-Apple’s subscribers to write
this software, the rest of us may get some mileage out of manipulating
AppleWorks data base files with our own programs.

You may remember from our March discussion of how to read an
AppleWorks data base file that the fundamental idea is to BLOAD a section of
the file into memory and PEEK at it. To write an AppleWorks data base file we
do just the opposite — POKE values into arange of memory and then BSAVE
thatrange. ' 3

The range of memory we PEEK or POKE is called a memory buffer. It must
be protected so that Applesoft doesn't accidentally step on it. The following
Applesoft program Iines, which also appeared in my March article, set up the
buffer and initialize the program:

100@ REM Progrem initialization

1819 LOMEM: 163B4 + PEEK(105) + PEEK([186)%256 : REM Create 16384-byte buffer.
1030 DEF FN PK2(RDR) = PEEK(ADR) + PEEK(ADR+1)¥256 : REM 2-byte peek function.

1050 886 = FN PK2(105)-16384 :
1052 BEN = BAG + 16384

REM BBG points to the beginning of our. buffer.
: REM BEN points to the end of our buffzr.

10854 PNTR = BBG : REM PNTR points to our poeition in the buffer.
1056 BYTE=0 : REM BYTE points to our position in the File.

In the March article, the 16384 in line 1052 was divided by 2. This created
space for two buffers. At the time, | said the second one would be used when
1 showed you how to write AppleWorks files. Well, that's what I'm doing now,
but we're still using just one buffer, so there’s no need for the division either
here or back in March.

When I wrote the March program, I figured this month’s demonstration
would read a record from an AppleWorks file in the first buffer, do some
interesting manipulations to it, and write it into the second file using the
second buffer. In fact, this month’s demonstration gets its input data from a
text file, notan AppleWorks file. Thus, this month’s routines have to deal with

Jjust one AppleWorks file at a time— the one being written to— and require
just one buffer. :

(A program that tried to implement the relational SELECT or PROJECT
commands would have to deal with two files {one input, one output); a
program implementing JOIN, three files (two input, one output); while a
program implementing the view feature might have to deal with a dozen or
more files. It’s not that confusing to deal with more than one fi:e at a time by
setting up multiple buifers, trust me. [just don’t want to complicate things by
getting into it this month.) - .

OpenApple 3.35

File structure. You may remember from March that an AppleWorks data

base file has three main parts. In the beginning is the header, which tells how
‘many records are in the file, how many categories are in each record, what the
names of the categories are, and other interesting stuff. Nextcomes a section
that holds report formats, if any have been defined. Finally comes the actual
data.
- Each data record begins with a two-byte record length. Next comes a
control byte for the record’s first category. When this byte is less than 128 it
indicates how many bytes of ASCII data are in the category. When this byte is
greater than 128, it indicates the next category or group of categories is
blank. Avalue of 129 indicates one blank category; 130, two blank; and so on.
If the first category holds ASCII data, the data is immediately followed by the
control byte for the second category, and so on. A control byte of 255 ($FF)
marks the end of the record; if any categories remain when the $FF is reached
they are all blank. For a more detailed description, see March's article.

The reason this month’s program gets its data from a text file is that Open-
Apple has a new 800-number answering service. New subscribers will call
this number (we hope) to order subscriptions. The answering service
operators enter the caller's name, address, and credit card number into a
computer. Every so often these “records” are sent to us by modem. We
needed a program that would transfer this data into the AppleWorks data
base file we use for processing credit card transactions.

The strategy | used for converting the text file data into an AppleWorks file
was to read one record from the text file, poke that record to the AppleWorks
file image in memory, read one, poke one, and so on, until the end of the text
file was reached. This works better than reading the whole text file and then
poking the whole AppleWorks file because it uses a consistent, manageable
amount of memory. Here are the arrays | used to hold the data:

1831 BIK 15(30) : REM
1832 DIM D$(3@) : REM
1033 DIM CA(30) : REM
1034 DI TD(3@) = REM this array is for timefdate ids in the output file.

19(n) is where I put the data I read from the text file. O$(n) is where | put the
data I wanted to poke into the AppleWorks file. In each case, the (n} indicates
a category. My program filled 1%(n) by reading one record from the text file;
manipulated that data and transferred it to O%{n); poked the data in O%(n)
into memory; then went back to read a new set of I$(n) values. :

The TD(n) array was filled just once — it indicates which output categories
are in the special AppleWorks time/date format. In my own case, all of the
values in this array were zero. If you want output category 5 to hold a date,
however, put a 192 into TD(5). For a time category use 212, We'll look at this,
and at the CB{n) array, more later.

Data manipulation. If there was no need to manipulate the data, it would
have been easier to simply use AppleWorks itself to load the 800-number
ASCIT text files into a new data basé file. From there we could use the
clipboard to copy everything into our credit card data base file, However, the
order in which the 800-number people take each category of information is
different from the order in which the categories appear in the credit card file.
Consequently, this didn't work. In addition, I wanted to check each credit
card number for the correct number of digits and make sure it had blanks in

this array ie for the caiegnr‘ies of the input file.
this array is for the categories of the output fila.
this array is for contro! butes in the output File.

all theright places.

Since Open-Apple’s own 800-number program is of little general interest,
Idon'tintend to reprint the whole thing here. I'l skip the part that reads the
text file {see the January 1985 Open-Apple, page 2 for more on how to do
that) and I'll skip most of the part that transfers data from the 1$(n) strings to
the O$(n) strings. Just to give you a taste for that part of the program,
however, here are a few lines you might like to look at:
3544 0$(8)="bad card number” : 0$(17)="ERR” : D$(25)=""
3545 ‘]F LEFT$({T%,1)="4" THEN 0F(17)="V1SA” : GOTO 3550
3546 1F LEFT${T$,1)="5" THEN 08(17)="HC" : GOTO 3550
3547 D$(25)=15(1)+" is not a VISA/MC number.” :
3550 REM continue with program

GOTO 3500

3600 REM continue with program
3602 05(2)=18(2)
3619 05(19)=1%(4)

Line 3602 simply fransfers input category 2 into output category 2. That
category accidentally appears in the same position in both files. It's the
caller's name. Line 3619 transfers input category 4 into output category 19.
That category, which holds the caller’s street address, changes positions
between files, as most categories do.

In lines 3544 through 3547 | did some fancier manipulations. Output
category 0 is for the credit card number, 17 for the credit card type (VISA or

3.36 Open-Apple

MC), and 25 for an error message thatwill actually appear on the AppleWorks
data base screen and explain any problems with this caller’s record.

This program segment begins in line 3544 by assuming the credit card
number will be bad and setting output categories 0 and 17 to reflect that. Any
previous error message In category 25 is erased, however. Line 3545 checks
to seeifthe first digit of the credit card number is a 4. Ifit is, the card is a VISA
card and output category 17 is set to show that Control would then pass to
the part of the program that formats the card number. g

Ifthe first digit of the credit card number isn'ta 4, line 3546 checks to see if
itis a 5, which would indicate a Mastercard number. If the first digit of the
number is anything else, line 3547 assigns an error message to output
variable 25 and skips the part of the program that would replace the “bad
card number” message in output field O with the correctly formatted number.

Writing the file. The strategy 1 used for writing (poking) the output
categories into memory involved two passes at the record. During the first
pass | calculated the total length of the record and the value for each control
byte. During the second pass I actually POKEd the control bytes and ASCII
data into memory. Here's the first pass:

6000 REM Write one record to file F
6001 REM category data expected .r 0%(n)
6002 REM time/date TOs in TO{(n)

6010 RL=L : REM minimum. record length (final' $FF byte)

6@15 NB=@ : REM counter for blanic categories’
6020 FOR N=@ TD NC-1 : REM For each category:
5025 CB(N)=LEN(0%(N)) : REM calculate control byte

6030 IF CA(N) > 127 THEN ERR=L : GOSUS 9@@ : REM data too long error

6835 IF CB(N) = @ THEN NB=NB+1 : GOTD 6060 : REM :atsgnrg ie blank
5040 REM category is not blank

5942 BFLAG=Q : REM clear blank flag

5844 IF N8>® THEN CB(N-1)=128+NS : BFLAG=L : NB=@ -

5845 °IF TD{N)=152 THEN CB(N)=6 : REn date category

5048 1F TO(N)=212 THEN CB(N)=d : REM time category

5058 RL=RL+BFLAG+1+CB(N) : REM add category length to record length
6850 NEXT .

The critical variables in this section of the program are RL (record length)
and CB(n) (an array for the control bytes). RLis assigned an initial value of 1in
line 6010. This represents the final $FF byte.

Between lines 6020 and 6060 there is a loop that examines each category.
Line 6020 sets the control byte for the current output category to the length
ofits ASCII data, Line 6030 checks to see if that length is greater than 127; if it
is, a subroutine shown later truncates it and sends a message to the screen.
The AppleWorks data base file format doesn't allow more than 127
characters per catzgury

If a category is blank, the control byte will hold a zero in line 6035. In this
case, NB, avariable for counting consecutive blariks, is incremented and we
immediately skip to the next category. If the control byte isn’t zero, on the
other hand, the category isn't blank and lines 6040 through 6050 will be
executed.)

Line 6042 makes sure that a fiag we'll use later is correctly initialized. Line
6044 looks to see if there were anyblank categories immediately before the
current category. If so, the control byte for the previous (CB(N-1)) categoryis
set to indicate how many blank categories there were,

So, for example, if categories 3 through 6 are blank; their control bytes will
all hold zeros until, while processing the non-blank category 7, we get to line
6044. We leave the control bytes for categories 3 through 5 at zero, but we set
the control byte for category 6 to 152, which indicates four blank categories
{132-128=4).

When we go to poking all these control bytes into memory we1l skip the
ones set to zero, so the simple 132 will represent all four categories in thefile
image. Ifthe final categories of a record are blank, all of their control bytes will
hold zeros. In this case, we don't need to include a control byte in the file—
the record ending $FF telegraphs that all the remaining categories are blank.

In addition to setting the control byte for the previous category to “blanks,”
line 6044 sets BFLAG to one and sets B, the number of consecutive blanks,
to back to zero. BFLAG makes its final appearance in line 6050, where we

sum the lengths of all the categories to determine the length of the whole
record, BFLAG makes sure that all the * blanks control bytes get included in
the summation.

Lines 6046 and 6048 look at TD{n), the time/date array, to see if the
category under examination holds an AppleWorks-format time or date. (For
more information on this format, see the March article.) If so, it forces the

 control byte to 6 for a date, or to 4 for a time. The length-of a date includes an

Vol. 3, No. 5

ID byte and five ASCII characters; a time an ID byte and three ASCII
characters.

Finally, line 6050 adds together the BFLAG, a 1 (for the control byte), and
the control byte value itself (which holds the length of the data). After looping
through all the categories, RLwill hold the length of the record and CB{n} will
hold the control bytes for each category

The next step is to poke the record into the memory buffer:

£102 REM Poke record intc memory buffer.
6110 POKE PNTR+L,RL/2S8 :
E112° POKE PNTR,RL -
E114 PNTR=PNTR+2

8126 FOR N=@ TD NC-1 :
8125
6138
6135

REM poke in record length
PEEK!{PNTR+1)*256

REM for each category

IF CB(N) = @ THEN 162 : REM if blank, then skip to NEXT

POKE PNTR,CB(Nj : PNTR=PNTR+l : REM poke in control byte

IF CB(N) > 128 THEN 6168 : REM if blanks, then skip to NEXT i
6140 IF TD(N} > @ THEN POKE PNTR,TO(N) : PNTR=PNTR+l : CB{N)=CB(N)-1
6145 FOR I=1 TD CB(N) : POKE PNTR+I-1,ASC(MIDS(08(N),I,1)) = NEXT
6150 PNTR=PNTR+CB(N) '

6166 NEXT

6170 POKE PNTR,285, =
6180 NR=NR+L @
619@ RETLURN

Lines 6110 and 6112 poke the record length into the buffer. Lines 6120
through 6160 form a loop that pokes in each category's data. In line 6125 we
check for a control byte of zero; if found, we do no pokes and instead skip
ahead to the next category Line 6130 pokes any other control byte value into
the buffer.

Line 6135 looks to see if the control byte just poked was a “blanks” byte. If
s0, we skip the rest of the loop. 1fnot, we next look to see if this is a date/time
category. If so, the date or time ID byte is poked into the buffer. Then the
control byte for that category is reduced by one; this is necessary because the
actual ASCII data for a date or time is one byte shorter than the real control
byte value indicates (it includes the length of the date/time ID byte as well as
the length of the ASCII data).

Finally, line 6145 is a poke loop that puts a category's data into the memory
buffer. Line 6150 advances the buffer pointer. When all of a record’s
categories have made it to the buffer, line 6170 pokes In the record-ending
$FF. Line 6180 then increments the number-of-records counter,

The header. Everything we've said so fafjust kind of assumes that we've
already poked a data base file header into the memory buffer. In fact, thisisn’t
done with pokes but by stealing a header from an existing file:

1079 FE="TEMPLATE" :

PNTR=PNTR+1 : REM write $FF at end of record
REM number of records

REM data base File we’ll steal a header fram

1100 REM Load First section of file and dig stuff out of the header.
1118 GOSUB 550@ : REM load file

1120 HL = FN PK2(PNTR)+2 : IF HL > 1817 THEN 5900 : REM header length

1122 NR = FN PK2(PNTR+38) : REM # of records in file
1124 NC = PEEK(PNTR+35) THEN 5900 : REM # of categories
1125 NF = PEEK(PNTR+38) THEN 53@@ : REM tt of report formats

: IFNC > 30
s IFNF>B

These lines, with the exception of 1070, come straight from March’s
ADB.READER program. The subroutine used by line 1110 loads the AppleWorks
file in F$ into the memory buffer. The rest of the lines dig some interesting
values out of the header.

The next thing we need to do is CREATE the data base file we'll be storing
data in. The BSAVE commands our routines use won't do this automatically
because we are specifying a special file type (ADB —AppleWorks data base}.
These lines will do that:

1200 W$="NEW.FILE”

1210 ONERR GOTD 1216

1212 PRINT CHR$({4):“CREATE”;W$;~, TADE”

1214 POKE 216, : GOTO 1220 : REM turn off DNERR

1216 IF PEEK(222)=13 THEN PRINT CHR$(4); “DELETE";W$: RESUME

1218 PRTNT “ERROR #~;PEEK(222);” 1N LINE ~;PEEK(218) + PEEK{219)%256 :

In line 1215 there is a reference to error 19—DUPLICATE PATHNAME
ERROR. If this occurs, it means a file named W$ already exists. We solve that
problem by deleting it Line 1216 simply handles any other error that occurs
while our ONERR routine is active between line 1210 and the POKE 216,0 in
line 1214, which tuns ONERR back off.

The next thingwe have to do is move the buffer pointer from the beginning
of the file pas!. the header; past the report formats, and past the first record of
the file, which holds “standard values.” Here's how to do that:

STOP

June 1987

1220 REM move pointer to cata, resaving file if necessary
1230 PNTR=PNTR+357+(NC¥22) : REM skip past hsader

1249 1F NF=@ THEN 1290 : REM skip past report formats
1258 FOR I=1 TD NF

1268 IF PNTR+5@@ > BEN THEN GOSUE 650@ : GOSUB 5500
1278 PNTR=PNTR+G0@

12B@ NEXT

1290 REM skip over standard values

1291 RL = FN PK(PNTR}

1292 IF PNTR+RL+2 » BEN THEN GDSUE 650@ : GOSUB 5500

1293 PNTR=PNTR+RL+2
1295 NR=Q :

The only trick to all of this is making sure that we don’t overrun our buffer.
(With the big 16384-byte buffer we're using this month it's no frick, but you
maywant to use a bunch of much smaller buffers in your own program.) As in
March, we assume a minimum buffer size of about 125K. This means the
entire header will fit in the buffer and solves some problems. In line 1236 we
move the pointer past the end of the header to the beginning of the report
formats.

Back in line 1126 we dug the number of report formats out of the header
and placed that value in NF. Lines 1250 through 1280 form a toe-in4water
loop that works like this. For each report format that has been defined we add
600 (the length of each report format) to the buffer pointer and see if the total
is beyond the end of the buffer. If it is, then before actually advancing the
pointer we call the subroutine at 6500 to save the portion of the file that's in
the buffer to disk. Next we call the subroutine at 5500 to load the next portion
of the original file into the buffer. A similar toe-in-water scheme is used in
lines 1290 to 1293 to skip over the. “standard values’ record which is the ﬁrst

REM reset number of records to zero

Open-Apple 3.37
The routines that do the actual buffer loading and saving look like this:

5509 REM load section of file into buffer
5510 BYTE=BYTE+[PNTR-BBG) : PNTR=BBG

5520 PRINT CHRS{4);“BLORD";FS;”, TADE, L16384, A“;BBG;” s B*;BYTE
553@ RETURN

5508 REM save contents of buffer to disk-

651@ L = PNTR - BBG

6520 PRINT CHR$(4);"BSAVE~;W$;~, TAODB, B”:BYTE;”, A”;BBB;~, L";L
6530 BYTE=EYTE+L : PNTR=BEG
E542 RETURN

The “load” subroutine appeared-in our March article (I did change the L
parameter to 16384 from 8192 because of the larger buffer we're using this
month, however), Both subroutines take full advantage of the extra parameters
Basic.system allows with BLOAD and BSAVE commands. The “T" parameter
allows us to manipulate non-binary files; The "B” parameter allows us to
begin loading or saving at a specific byte in the file.

More information about the "load” subroutine can be found in our March
article. The “save” subroutine works by first calculating the length of what's
about to be saved in line 6510. This length is the distance in bytes between
the beginning of the buffer and the current pointer position. Line 6520 saves
the image in the buffer into the file, beginning at the byte specified by the
BYTE varlable. The first time the buffer is saved, BYTE will equal zero. Line
6530 advances BYTE for subsequent saves. It simply adds the length of
image just saved onto the previous value in BYTE. This line also resets the
buffer pointer to the beginning of the buffer.

One final place we need a toe-in-water scheme is when | we are actual!y
poking categories into the memory buffer. How about these lines, which fit in
between those that determine the length of a record and those that actually

record in the data section of the file.

poke arecord into memory:

Our corrections this month come from Ingle Farm,
South Australia, whence Open-Apple subscriber Lili
Gray points out that back in December 1986, on
page 2.85, half way down the third column, the
correct address of the Basic.system input hook is
43690-91, not 43607-08 as written. Gray also
reminded me fo mention another error several of
Yyou noticed in our recent April issue—in my intro-
duction to that month's letters {page 3.18), the page |
should have encouraged gou to turn to was 3.5, not
3.7. Now that our corrections are overlapping on
themseives, 1 really feel like an assembly language
programimer,

Iam aghast and agape at the response we got
tolast month’s call for Apple’s officers to take a stand
on the issue of Apple’s software not following
Apple’s own protocols (“Slot 3 RAMdisk rules,” page
5.50). Rather than change a few bytes of code, Apple
quickly decided to solve the problem by moving all
its application software into a separate company
and spinning the new company off to the public,
according to the Aprit 29 Wall Street Journal (page
4). Since large software companies have never
followed Apple’s published protocols anyhouw, there
will now be no need to modify Apple products such
as AppleWorks, Apple Writer, or Instant Pascal to
follow them, either.

Although the Wall Street Joumal didn r‘mentmn
the May Open-Apple as the primary factor in Apple’s
decision, the facts speak for themselves. Instead, the
newspaper quoted John “Scully” (whoever he is—
the president of Apple has an“e” before the "y in his
name) as saying that the focus of the new company
will be to “create and market innovative software for
Apple’s Macintosh and Apple Il computers.”

Ifor one will be even more aghast and agape than |
am now if:this new company produces anything
innovative for the Apple 1. The company will be
headed by William V. Camnpbell, who is now Apple's
top marketing executive. Campbell’s contributions
to the Apple If have so far been nil to negative. Under
his leadership Apple has refused to promote the
Apple Il {and occasionally actively discouraged
sales) in business and university markets. Under his
leadership Apple dropped most of its Apple I dealers
outside of major metropolitan areas. fHe Is a Macintosh
yuppie from stem to stem and I predict that any
innovative stuff that comes from his company will
run only on a Macintosh.

Paradoxically, his company’s biggest product off
the starting line will be AppleWorks, although none
of the computer trade papers have picked up on that
stariling fact yet. According to the Wall Street
Journal, neither the new company nor ils products
will use the “Apple” trademark, which may mean
thal even the product names “AppleWorks” and
"Appie Writer” will soon disappear from sight.

What all this means to the lypical Open-Apple
reader is that the Apple II software-market Is on the
vérge of a renaissance. By totally dominating this
market since the introduction of AppleWorks, Apple
accidentally squeezed many one-time Apple Il devel-
opers into IBM or Macintosh products (or inlo squash).
I expect the best of those developers will come back
and join both surviving Apple Il software companies
and new companies we haven't heard of yet in the
next great software gold-rush. -

When ! couple Apple’s upcoming market withdrawal
with the recent introduction of the ligs, I see more

opportunity for Apple Ii software developers than
even during the boom years of 1980-83. Get out
there and develop sonething: innovative. I smell
buyers in the wind for a change.

This issue of Open-Apple is the first to be sent
to more than 10,000 paying subscribers. We appredate
your support and encouragement. Things are going
so well I've decided to come out from underground
and start advertising in Apple Il magazines. | even
hired an answering senuce wtth an 800 number to
take orders.

Our first-ads will appear in Ihe July issues of Call
<A.P.F.L.E. Nibble, inCider, and A+ and will confinue
monthly thereafter. Look forthem—each ad includes
adifferent tip from a previous issue of Open-Apple.
In addition, each ad will also include some of the
more coinplimentary things you've written in your
letters to us. We've always gotten lots of blush-
inducing fan mall from our readers but have included

.only snippets of it here because it's not what you're

paying to read. I've always hated to waste all that
good stuff, however, so I'm really pleased I've ﬁna[ly
got someplace to publish it.

I occasionally bill Open-Apple as the “meeting
place of the world-wide Apple Il communify.” Even
S0, even I was amazedwhen we actually did a count
last month and found paying subscribers in 54
different countries. Just to celebrate, | made a point
of selecting a number of world-wide letters for Uncle
DOS this month. (Our subscribers outside the U.S.
are an intelligent and active bunch— they re forever
sending us questions we can't answer.}

The only bad news 1 have is that I've run out of time
and space for the exposition on the ligs memory
manager that | promtsed you last month. Just give
me 30 moredays... .

Power tothe Applell

I live in West Africa where the 220 volt, 50 gydle
power is less than dependable. The power here is full
of spikes, dips, brown-outs and all manner of rash. To

3.38 Open-Apple

630 REN Will, record fit in buffer?
£@35 IF PNTR+RL+2 > BEN THEN GOSUB 6509
5835 IF PNTR+RL+2 > BEN THEN ERR=Z : GOTD 5300

That is pretty much everything you need to write AppleWorks data base
files. Not so hard, was it? There are also a couple of error routines that fve
placed at the end of this article. In addition, you'll find it helpful to see the
actual guts of a file-writing program:

1508 PRINT CHRS(4): DPEN TEXT.FILE”

1510 GOSUB 2500 : REM get next racord from text File

1515 IF EOD=1 THEN 1550 : REM if at end of text file, save buffer & guit
1520 PRINT "Record “;NR+l : REM assurg user something is happening

1530 GOSUB 3000 : REM manipulats data

1540 GOSUB 660@ : GOTD 1510 : REM write record, continug

1550 PRINT CHR$(4);"CLOSE TEXT.FILE”

1560 POKE PNTR,255 : POKE PNTR+1,255 : PNTR=PNTR+2 :
1578 GOSUB 5502 : REM save buffer to disk
15B0.POKE 8BG,NR : REM fix number-of-records byte
1580 PRINT EHRS[4]:'BSHVE":HS:",THDE.LI,EaE.H”;BBG
1600 END

Line 1500 opens the text file that holds the data we want to get into an
AppleWorks file. Line 1510 calls a subroutine not shown here for reading one
set of categories — one record — from that file. If this subroutine encounters
an END OF DATA error, it should set the EOD variable to 1 before RETURMNing,

First follow what happens when EOD comes back 0, meaning there are
more records to read. Line 1520 prints the current record number to the
screen, just to assure the user that something is happening. Line 1530 calls

REM two file-ending $FFs

Yol. 3, No. 5

the subroutine, not shown here in full, that does all the data manipulations.
Line 1540 calls the subroutine that pokes a record Into the memory buffer,
then returns to line 1510 for the next record.

When we get to the end of the text file, EOD comes back 1 and we go toline
1550. First we close our text file. Then we poke two additional $FFs at the end
of the file, which is the final detail of the AppleWorks data base file format. In
line 1570, we save the memory buffer to disk.

Lines 1580 and 1590 again use the BSAVE command, but this time with B
set to 36 and L set to 1, to update just one byte of our new file. This is the byte
in the header that holds the number of records in the file.

And that brings us to END.

530@ REM The File doesn’t look right--probably a program, not a file, bug.

591@ HOME : VTAB 10

5922 FRINT “I’'ve encountered an error in the file’s structure”

5338 PRINT © in record “;R;” and category “:N:”.”

5948 PRINT

5958 PRINT “The file buffer begins at “;BBG;” and ‘ends at

596@ PRINT “ The buffer pointer is ab byte “;PNTR;”.”

5930 END

£92@ REM error handler for write instructions

6905 ON ERR GOTD 6910, 6320 :

6919 EMSGE="Category "+5TR¥(N)+” in record “+STR$(R)+" was truncated.”

6912 OS{N)=LEFT$(D$(N),127) : CB(N)=127?

£914 GOTO &39@ .

£320 EMSES="I] can't write record +STR$[P]+ bacause it e“+CHR$(13)+
- .lurlgzr than the memnrg buffer.”

: STOP

RETURN

~JBEN; 7. "

6522 GOSUB 6530
6390 PRINT EMSG$:

keep my system healthy, | run the power through a
220 to 110 volt iransformer and then through a U.S.

model 15 amp automotive battery charger. After the -

charger [have 2 cheap 12 volt car battery. The battery
connects to a Tripp-Lite 550C Powerverter and my
computer plugs into-that.

Some people here have run the same system, but
with a-less-expensive 500 watt TrippLite that is not
frequency controlled. The Apple doesn't seem tocare.

Even my Sider hard disk works perfectly off the
square wave power my Powerverter provides. So L also
have a very serviceable hard disk system that will not
crash. We have had several full power failures and the
screen didn't even jump. | have as much time as |
want. to finish a document, save it. and park the
heads. [could probably run an hour or so without
power, but that would risk discharging the battery.

A 15 amp charger seems to be the minimum
necessary to keep the battery fully charged and the
system up. Previously | had an 8 amp 220 volt charger
but I couldn’t run the system continuously. [would
charge overnight to get about five hours of up time.
Unfortunately, with that system it was very easy to
discharge the battery by getting carried away on a
long night You only get a few full discharges of an
auto battery. So now I'm on my second battery, but
I've had no problems with the bigger charger.

If the current is running closer to 240 than 220 the
- inverter gets a little too much voltage from the
charger and preduces dose to the 132 volt upper
limit for the Apple. This makes the screen wiggle a
little. To get the right output voltage, | can tum the
charger to trickle mode for awhile or adjust the
fransformer to a different tap.

I should mention that my lle has a Disk II card,
Thunderclock, CP/M Plus, CCS serial card, Sider card,
and Apple 80-column card. | also have an Apple
Monitor 1l and System Saver fan plugged into the
Powerverter, When [tried to run my NEC Spinwriter off
the inverter | got a wiggly screen. The NEC just thrives
offthe 50 cycle power from the fransformer, however. |
put a Transector surge protector between the frans-
former and the printer to clean the power up alittle.

Bruce Slater
Niamey, Niger

I called Jerry Shepherd at Shepherd Marketing (PO
Drawer 681339, Schaumberg, I 60168 1-800-AC-
SPIKE) to ask how typical your solution was and to
find out what “frequency controlled” means. Shepherd
spectalizes.in selling uninterruptable power supplies,
inverters, and similar items. He's a fountain of
Information about this stuff. (See “Reviewer’s Comer”
in our January 1986 issue, page 98, for more on
uninterruptable power supplies.)

Shepherd sald your system is a common solution
for dirty 220 volt. 50 cycle power. He suggested that
you try to get an KV-Marine battery, rather than an
aufornotive battery, however. He said that marine
batteries are designed to provide a steady stream of
power forlong periods of time. Automotive batteries,
on the other hand, are designed to provide short
bursts of power for starting engines on cold days.
The voltage of an automotlve battery starts to drop
when only 20 per cent of its stored energy has been
used. The voltage of a marine battery, on the other
hand, doesn't drop until about 80 per cent of the
stored energy is gone.

Shepherd also said that it's usuaﬂy cheaper and
easier to buy a battery charger locally than to use a
110 volt U.S. model, And he thinks it’s best to stick
with “frequency controlled” inverters, such as the
one you have. This means i provides 60 cycie
power. Shepherd said the Apple 1T itself will work just
fine without frequency control, buf some monitors
and other peripherals won't

Finally, Shepherd said that any computer or
peripheral that has a modem “switching-type”
pouwer supply works fine (even a bit cooler) with the
square wave power your inverter provides. Only
older equipment that uses a “linear” power supply
needs sine wave AC, The TrippLite 550C Powerverter
currently sellsfor $229.

International AppleWorks |

About half a year ago | installed a Checkmate’s
MultiRAM CX/512 in my German Ilc. It's a pity but I'm
onlyable to use it as a RAMdisk rather than to expand
AppleWorks. | sent the warranty card to Checkmate
together with a question about how to expand the

German AppleWorks version 1.2, but | haven’t gotten
any answer.

1 guess the same problem is occurring with the
simple program from Afan Bird, which you published
in November (page 2.75, which is misnumbered as
2.78), that keeps AppleWorks from stopping on the
way to the desktop. Bird's program doesn'’t recognize
my German version of AppleWorks either. Is there

anyone able to help me? Hans~Juergen Kuehne
NeisserSt. 2
D-3007 Garbsen 9 West Germany

We have seen a couple of the international versions
of AppleWorks and, yes, their “gufs” vary from the
U.S. versions our patch programs assume. Dennis
talked to Ron LaMee at Checkmate about your
problems, LaMee said he has seen five intemational
versions of AppleWorks: German, French, Halian,
Spanish, and Hebrew

Checkmate has attempted to produce expanders
for some of the intermational versions, which are
apparentiy not ahways numbered in exact corre-
spondence with their U.S. counterparts. Specifically,
the French and German versions are supported,
although LaMee says he’s not sure Checkmate has
received a disk containing the most recent German
version to verify the expander pafches on. Since
your previous letter seems to have slipped through
the cracks, he will try to get a copy of the German
version 1.2 expander to you; if you don't hear from
him soon the European distributor for Checkmate is

Pandasoft, Apple Vertragshandler, D-1000, Bertin 12.

You should be able to get the upgrade software
through them also.

As far as Alan Bird's patches go, multiple versions
create multiple problems: A patch, like the ones we
publish here in Open-Apple, is usually a small one-
or wo-byte change to a program's machine language
instructions. The difficulty is that the instructions a
patch modifies usually move around inside a program
befween one version and another. Often the identical
one- or two-byte change will work, but only if
someone can figure out where the instructions to be
changed have been moved. Consider that AppleWorks
has been released in five official U.S. versions, to say

June 1987

nothing of international versions, and gou'll immedi-
ately see why we'd get nothing else done if we took
every patch request we get seriously.

Nonetheless, Dennis and I think we need to do
som to make the patch instructions we publish
more universal. What we're considering doing is to
give you a few bytes of the original code on both
sides of any patch we print. You should be able touse
a “disk zap” program such as ProSel’s BLOCK WARDEN,
Quality Software’s Bag of Tricks 2, Beagle Bros’
ProByter, Central Point’s Copy 1I Plus or even the
fle or ligs Monitor to search for the code segment
and change it, no malter where it's been moved to.

The problem with this technique is that you, gentle
readers, would have to leam how to patch programs
this way. it's more difficult than typing in an Applesoft
program, such as Bird's original, but not greatly so.
But we can't help you a great deal—the speclfic
procedure would depend on exactly which program
you used to make the changes. Questions? Com-
ments? Jokes?

A further complication is that some code doesn’t
stay exactly the same when it's moved; addresses
embedded in a segment can change aswell. In the
case of Bird's patches, even the relevant machine
language instructions change between U.S. Apple-
Works versions 1.3 and 2.0, which kills all our hope of
giving you a universal way to find the spof that
needs to be changed.

ProDOS directory confusion

1 am encountering a lot of problems when I try to
store three or four programs (AppleWorks/Pinpoint,
etc.) on the same 3.5 inch disk. Can you help?

Bruce Parry
Rawda, Kuwait

The strategy we use when moving sets.of filestoa
large disk is to create a subdirectory for each sef of
files (APPLEWORKS for AppleWorks, APLWRITER for
Apple Writer, and so on). Then we copy all of the
files on the original program disk into the appropriate
subdirectory.

To start up a program, it is usually necessany to
first set the prefix to the subdirectory the program Is
in, then “dash” the system file. For example, with a
disk named /UNI:

ta run Rpple Writer:
PREFTX /UNI/APLWRITER
-AW.SYSTEM

to run Applelorks:
PREF I% IIJNIIRPFLENDPKS
-APLWDRKS.SYSTEM

If the program being started is written correctly, it
will use the existing prefix to find the rest of its files.
Unfortunatety, not all programs do this. Some look
in the main volume directory for their files; some
force you to enter pathnames to their various addl-
tional files. The latter are really a pain if you move the
files to another disk; once moved, the program
configuration must be re-entered to fix the
pathnames.

Some programs don't remember which subdlrec-
tory they were started from if you change the prefix
after startup, An example is Apple Writer, which
always looks for the file i needs to initialize a disk in
the currently active subdirectory rather than in its
own subdirectory. That should be classified as a
bug.

Intemational AppleWorks Il

Iuse the AppleWorks spreadsheet to display cbhimns

of figures, | would like a "blank when zero” option so
that fields that contain a zero value display as spaces
instead of "0.00," which I think looks untidy in a
report. If you are scanning a report with a lot of zero-
filled fields it is easy to miss a single field set to, say,
"0.80." My answer so far is to print the report to the
clipboard, copy it into the word processor, then edit
outall the offending values, but s there a better idea?

Atthough AppleWorks was designed for the U.S.
market, it is also marketed internationally. In spite of
this there is no way to enter a date in anything other
than the funny U.S. month-first format — nobody else
in the world does it this way. Does anybody have a
paich to make the date appear in a more generally
accepted format such as dd-mmm-yy7

Another "U.S. only” gripe is that the spreadsheel
formatting options allow for a currency layout but the
only currency symbol supported is the dollar sign.
Does ‘anyone know of a patch to change this to
another character? Cumently, | either have a special
column just to hold the currency symbol, or [print to
the word processor and replace all the dollar signs.

Has anyone found away to cause the word processor
to do proper right justification? By this | mean a
straight right edge with aragged left edge. This layout
is usefu! for adding page headers to the top right or
bottom right of a page respectively and can also be
used in a letter o put the date against the right hand
margin (where it always used. to be before people
started using word processors}.

On a different but related subject, I recently noticed
that the chars-per-inch setting that is in effect when
you set a header or footer in AppleWorks remains in
effect when the header of footer is printed, even ifyou
have since changed iL For instance, if you define a
header while in 8 cpi, then prirtt your page in 12 cpi,
the header is printed on the second and subsequent
pages at 8 cpi without having to reset the pitch. | know
it shouldwork like this but:twas stilka surprise to see
it

Tony Bond

- Herts, UK.

A simple way to get blanks instead of zeros in
calculated cells is to set up an #IF statement that
displays “NA" if a cell’s value is zero. Then start up
your favorite disk zap program, find the YA inside the
AppleWorks program files, and change. it to blanks.
Of course, this means you can't use A ifself anymore,
and it won't work with your data cells, but it should
help. To find A, use a disk zap program to search
though the AppleWorks SEG.M1 file forthe hexvalues
02, 4E, 41 This sequence occurs only once in the
versions we ve looked al. Change the 4E and 41 to
20s (blanks).

One of our relentless Australian readers, David
Grigg, complained in October 1986 about the Apple-
Works date format ("Of mice and macros” page
2.68), then went out and devised himself a patch to
fix it. The palch is too long to print here, but well
send a phofocopy along to any subscriber who asks
for one before we lose It. Australian readers can send

astamped self-addressed envelope directly to Grigg.

at 1556 Main Road, Research, Victoria 3095.

We thought finding the currency symbol would be
easy until we discovered that the ASCII code for “$"
also happens to be the oft-used 6502 BIT instruction.
However, by process of elimination, Dennis figured
out that if you look through SEG.M1 for the hex
sequence A9, 24, 9D youll find the byte you're

Open-Apple 3.39
looking for. Change the $24 to a $23 to start seemg
pounds sterling.

We've always had right justification on our wish
list, too.

Hard hardware questions

I have just started using VIP Professlonal and | am
impressed —except that [end up seeing purple after
a long session with the program and my green
monitor. [think MuitiScribe is very considerate in
providing an invert screen function. s there something
else I can do to invert the screen short of buying a
color or amber monitor? John Mamutil

Westmead, HSW

A few months ago my second disk drive started
crashing every ten minutes or so. Considering static
electricity as a cause, 1 used an ohm meter to see if
the chassis of the drive was grounded. Well, low and
behold, the great thinkers at Apple hadn't seen fit to
provide the drives with an earth ground. I tied a small
wire to one of the screws on the bottom of each drive,
and tied these to the chassis of my Apple 11 Plus,
which does have an earth ground. Since that time I've
never had an unexplained disk crash. Does the
preceding sound logical to you, or just the rantings of

an old farmer? Leonard Simas
Hanford, Calif.

I have an Apple lle, about four years old, which 1 use
almost exclusively with Apple Writer. Usage varies
quite a bit but typically I'l have it up and running one
or two times a day for 30-60 minutes. What are the
pros and cons of 1eawng the system on 24 hours per

day? William J. Mills
Heiskell, Tenn.

Can RGB cards or monitors bought in the U.S, be
used in Europe? I find the cassette connections on
my Ile quite unutilised. It there any way of putting
them to real good use?

. In my opinion the Snapshot card with Shutle
software from Dark Star Ltd in England is the best
thing that has happened to the Apple after RAMWorks.
1t allows one to divide memory into four workspaces
and then load in four different programs at one time.
You can switch between them by simply pressing a
button—no rebooting,. You restart from exactly the
point you left. I regularly use a 551K desktop Apple-
Works, Copy [I+, Beagle Graphics, and a chess program

“"all in the RAM and switch between them at will.

Dr. 5.5, Datye
Akureyri, Iceland

Neither Dennis nor know enough about electronics
lo answer any of these questions, so Dennis called
Apple Il hardware guru Jim Sather, author of Brady
Book's Understanding the Apple Il and Under
standing the Apple Ile and asked him.

In regard to inverting the monitor picture: Sather
said the easlest solution is to get a monitor with
inversion capabillty built in. Asecond solution would
be invert the video signal tn the Apple before it is
combined with the sync signal, but this would
require motherboard modifications that are too
complex to gel into here. A final solution is to build a
‘black box that strips the sync signal off of the video
signal, invert the remaining video signal {keeping
the amplitude the same), then re-combining the
inverted signal with the sync signal. We will leave
that as an exercise for the reader.

In regard to the lack of earth groundmg on Apple
disk drives: Sather said there is no reason that the

3.40 Open-Apple

drive chassis should have to be grounded, as evl-
denced by the 2 miltion plus Apple Il owners who
have survived the design without problems. But the
grounding may solve a problem not necessarily
connected to the Apple itself, such as a radio-
frequency signal from an outside source cormpting
signals as the dlsk head attempts to transfer data.
Grounding the Apple drives may cure the problem
by reducing the strength of the inferference as seen
by the read/write head. Sather said that if you have
problems with the hard drive, it certainly would
make sense to try the same solution, but suggested
that you double check with your hard drive manufac-
turers technicians first to see if they have any
thoughts on the matter.

In regard to leaving your computer on 24 hours a
day: Dennis and I had both read somewhere that
that's what Woz does, and if it's good enough for him
it suits us, too. If you leave your computer on all the
time it will stay at a constant (if somewhat warm)
temperature rather than going through daily warm-
up cool-down cycles. Leaving it on avolds a power
surge when you turn the machine on, leaves your
machine always ready to use, and, if you are a big
RAMdisk user, avoids the daily detay while you load
the RAMdlsk. Sather disputed most of that. His point
was that modern digital equipment is very reliable
and is built to withstand temperature cycling. Leaving
the system on 24 howss a day increases the probability

Open-Apple
N I

is wr-'lﬂen. edited, published, and

@ Copyright 1987 by
Tom Weishaar
Business Consultant Richard Barger
Technical Consultant Dennis Doms
Circulation Manager Sally Tally
Business Manager Sally Dwyer

Mot rights reserved. All programs published.in Open-Apple are
public domein and may be copied and distributed without charge.
Apple user groups and significani other$ may reprint articles from
time lo lime by specific wrilen request. Requests and other
editorial material, including letters te Uncle DOS, should be sent to?

Open-Apple
: P.O. Box 7651 -
Overland Park, Kansas 66207 U.S.A.

Published monthly since Jfanuary 1985. World-wide prices (in U.S.
doilars; airmail delivery included at no additional chargej: $24 for 1
year, $44 lor 2 years; $6C for 3 years. All single back issues are
currenlly available for $2 each; bound, indexed editions of Volume 1
and Volume 2 are £14.95 each. Volumes end with the January issue;
an index for the prior volume is included with the February issue.
Please send all subscription-related correspondence to:

.Open-Apple
P.0.Box 6331
Syracuse, N.Y. 13217 USA.

Subscribers in Australia and New Zealand should send
subscription correspondence lo Open-Apple, c/¢c Gybernetic
Research Ltd, 576 Malvern Road, Prahran, VIC 3181, AUSTRALIA

Open-Apple is available on disk from Speech Enterprises, P.O.
Box 7986, Houston, Texas 77270 (713-461-1666).

Unlike most commercial software, Open-Appte is sold in an
unprotected format for your convenience. You are encouraged to
make back-up archival copies or easy-to-read enlarged copies for
your own use without charge. You may also copy Open-Appieior
distribution to others. The distribution fee is 15 cents per page per
cog distributed.

WARRANTY AND LIMETATION OF LIABILITY. | warrantthat mostof
the infermation in Gper-Apple is uselul end correct, although
drivel and mistakes are included from time to time, usually
unintentionatly. Unsatisfied subscribers may return issues within

" 180 days of detivery for afull refund. Please include 2 note from your
parents or children confirming that all archival copies have been
destroyed. The unfullf/led portion of any paid subscription wiil be
refunded on request. MY LIABILITY FOR EARORS AND OMISSIONS
1S LIMITED TO THIS PUBLICATION'S PURCHASE PRICE. In no
case shall | or my contributors be {iable for any incidental or
consequential damages, nor for any damages in excess of the fees
paid by a subscriber.

155N 0885-4017
Frinted in the U.S.A.

Source Mail: TCF238
CompuServe: 70120,202

to 100 per cent that if any surges or spikes occur they
will happen while the system is on. There is aiso the
possibility that constantly warm components may
age faster. In summary, we judge this to be one of
those rare and wonderful situations where you're
not damned If you do and you're not damned if you
don’t e

In regard to the world-wide compatibility of RGB
interfaces and monitors: Sather said that there is an
outside chance that you could use the U.S. RGB
interface and monitor with a European Apple Ile
motherboard. It depends on.whether the 60 cycle
U.S. equipment can sync to the 50 cycle video signal
of the European Apple. The only way to know for
sure would be to try the set-up and see if the video is
stable. Somewhere we probably have a subscriber
who has trled to cross-pollinate the video in such a
manner, so I expect to know more about this soon.

Inregard to gadgets that use the Apple Il casselte
port: such items are rare, but they do exist. The
Cauzin Softstrip reader is an example of a device that
will hook to the Ile cassette connector. Dennis also
remembers a letter from a subscriber who was
working on anetwork that used the cassefte connec-
tions, but the details escape us. -

In regard to the Dark Star Snapshol/Shuttle
combination: I've seen il, It works, Ilike it. Dark Star's
address is 78 Robin Hood Way, Greenford, Middlesex
UB6 7QW, England 01-900-0104, Source Mall BCJ
456. :

Love's labor’s lost?

When you are forced to work on a ligs in native
mode for three months, with all the ponderous
overhead of the Apple Programmer’s Workshop and
the toolset intricacies; you begin to see that whatever
the Ilgs might be, it isn't a proper successor fo the
Apple'11. Since | discovered the Apple If in mid-1978,
nothing has turned my head; I've been faithful
(except for some C-64 micro “affairs”) ever since.
Waiting (aswe all ave been) forwhatApple Computer
Cowould do with the Iine. Cheering for the 65816 and
snickering atall the Mac-nuts out there. "Just wait," we
said, “the new Il will knock you on your keister!”

Gotta tell ya. The emperor has no clothes. This is
the end of the line for the I1.

Orisit?

Seems ['ve fallen in love again. This time with
another "IL" Yeah, the Mac IL Can't afford one. Can't
even afford a book about one. But check those specs!

The easiest way | know for old Apple Il nuts to hear
what [have fo say to shut your eyes and pretend that
the Mac [has a souped up 65816 screaming along at
10.MHz. When we finish the journey, it's fair to open
our eyes and admit it doesn't

* open architecture (96-pin Nubus)

* graphics-based operating system

* graphics that are completely extendible with any
application software changes. ’

* gobs and gobs morel ‘

. Ten years ago, the Apple [l blew the doors off allthe
other designs of that time, Because it was extendible!
Because Woz foresaw the natural design/leamning/

- cost reduction curves coming. Do you still think the

llgs is a fitting successor? [don't.
o ~ Brooke Boering
Vagabondo Eriterprises

Aptos, Calif.

In its own class, the Iigs blows off my doors for

pretty much the same reasons the Apple II did. The
Iigs is the first Apple Il since Woz's original that was

Yol. 3, No. 5

designed to take advantage of future developments.
Future developments such as I-megabit and 4
megabit memory chips. Future developments such
as optical disks and CD-ROMs. Future developments
that haven't been designed yet but that will plug into
one of those eight slots.

Beyond that, however, the old Integer Basic dem-
onstration program APPLEVISION runs on the Hgs.
Almost every trick we've learned over the past 10
Years still works on the [igs. The ligs is a tool that
real people already know how use (o make a differ-
ence in their lives. What makes the ligs magnificent
{and a fitting successor in the Apple I line) is that it
encompasses both the past and the future. We don't
have to give up the power of the old while we learn
how to hamess the new

Your real complaint is with the ligs programmer’s
workshop {the set of system software used to write
“native mode” or “16-bit” programs for the Iigs)
rather than with the figs itself. The programmer’s
workshop is typical of the system software weve
always gotten from Apple — fairly powerful but slow
and none too friendly. Think of the difference between
Apple’s assemblers and third-party assemblers.
Think of the difference between Applesoft and Apple-
soft with GPLE or any of the other good line editors.
Think of the difference between FILER and CONVERT
and Copy I Plus.

I think that to be falr we really have to give both
Apple and third-party systems soffware developers
more time to show us what they can do. When the
Macintosh had been oul for as long as the IIgs has
been there wasn't even an assembler available for it
—you had to have a Lisa to program the thing. The
Iigs is far beyond that, but stili not near where it T be
ina year or two. The ProDOS 16 it has today is really
Just ProDOS 8 wrapped in a protein coat that looks
like ProDOS 16. The engineers who write languages
and the engineers who write toolbox routines are
still trying to figure out where today’s bugs are.
Things and people need time to develop.

I do agree that super-high-speed super-high-
resolutlon graphics don't seem to be a strong point
of the Iigs. For people willing to pay for super-high-
speed and resolution graphics, the Mac I is a
superior machine. But you can buy two Ifgs's for the
price of similarly equipped Mac I and still have more
than $1,000 left. ($2,164 for a Hgs with one 3.5 drive,
color monitor, and 1 Meg of RAM; $5,396 for the Mac
1T with the same equipment.) The Mac I color
monitor alone costs as much as the Iigs system unit
($999). You are comparing two machines that are in
entirely different price-performance categories.

The fIgs, like its predecessors, is a personal
computer. The Mac II, like the Lisa (much like the
Lisa, in fact) and its other predecessors, is an
institutional computer. The revolutionary thing

about Wozniak’s Apple Il was that it took the power of

computers out of the hands of institutions and gave
it to indlviduats, To Gil Scout badge moms and
Junior Softball toaches and sixth graders entering
sclence fairs. To people who can't walk or who can't
see. It liberated scientists from institutional pro-
grammers, it liberated executives from “no-can-do”
data processing departments, The ligs is part of that
tradition. Programs as diverse as Applelforks and
Fire Organ run on it right now. Within eighteen
months, non-professionals will be using new lan-
guages that lake full advantage of the machine’s
powers. Within a few years, revolutionary, yet
undreamed of soffware will make this machine a
legend,

